DETERMINATION OF RATE EQUATIONS OF CATALYTIC OXIDATION OF PROPENE TO ACROLEIN AND ACRYLIC ACID IN THE GAS PHASE

Jiř̌ Švachula, Antonín Tockstein and Josef tichý
Institute of Chemical Technology, 53210 Pardubice

Received February 18th, 1985

The kinetics of propene catalytic oxidation to acrolein and acrylic acid was studied in a flow--circulation reactor over a multicomponent oxide catalyst containing molybdenum, cobalt, nickel, iron, bismuth, and potassium. The rate equations were found for the total formation of acrolein and acrylic acid.

The catalytic oxidation of propene to acrylic acid in the gas phase takes place in two steps, and two different catalysts are used which work at different reaction conditions. In the first step, propene is oxidized to acrolein and partly acrylic acid is as well formed. At the present time, the multicomponent oxide catalysts containing molybdenum, tin, vanadium, phosphorus, iron, bismuth, cobalt, boron, antimony, tungsten, tellurium, nickel, etc. ${ }^{1}$ appear to be applied largely to oxidation of propene to acrolein. On studying the kinetics of propene oxidation to acrolein over multicomponent oxide catalysts, it was found out that the rate of formation of acrolein did not depend on the oxygen partial pressure and is of the first order with regard to propene ${ }^{2-4}$. Boreskov and coworkers ${ }^{5}$ then observed the acrolein autocatalytic effect during propene oxidation to acrolein.

The aim of this work was to carry out a detailed study of propene catalytic oxidation to acrolein, to find the respective rate equations, and to propose a reaction scheme of propene oxidation to acrolein.

EXPERIMENTAL

All the kinetic measurements were carried out in an apparatus with flow-circulation reactor under the following reaction conditions: catalyst particle size $0.4-0.63 \mathrm{~mm}$, total flow rate of reaction mixture $F=5 \mathrm{dm}^{3} / \mathrm{h}$, reaction temperature $T=593 \mathrm{~K}$, pumping power of circulation pump $200 \mathrm{dm}^{3} / \mathrm{h}$, reaction mixture composition $5-7 \mathrm{~mol} \% \mathrm{C}_{3} \mathrm{H}_{6}, 8-14 \mathrm{~mol} \% \mathrm{O}_{2}$, 10 $30 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O}, 1.5-4 \mathrm{~mol} \% \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}, 0.25-0.5 \mathrm{~mol} \% \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$, the remainder is nitrogen. These conditions ensured that the effect of internal and external diffusion was negligible and that the measurement took place in the kinetic region. The amount of substance of propene before and after the reaction was determined by gas chromatography, the amount of substance of acrolein polarographically, and that of acrylic acid by titration ${ }^{6}$. The kinetic study of propene
oxidation was carried out over a multicomponent oxide catalyst of the type $\mathrm{Mo}_{\mathrm{a}} \mathrm{Co}_{\mathrm{b}} \mathrm{Ni}_{\mathrm{c}} \mathrm{Fe}_{\mathrm{d}} \mathrm{Bi}_{\mathrm{c}} \mathrm{K}_{\mathrm{f}} \mathrm{O}_{\mathrm{x}}$ which was prepared in accordance with patent ${ }^{7}$.

RESULTS AND DISCUSSION

On studying the influence of oxygen, water, propene, acrolein, and acrylic acid on the kinetics of propene oxidation, it was found out that the total rate of acrolein formation R_{A} did not depend on the partial pressure of oxygen and water, increased with increasing the propene partial pressure and decreased on adding acrolein or acrylic acid into the initial reaction mixture. The characteristic feature of the rate of acrolein formation is a passage through a maximum in dependence on the propene conversion x_{p}. On oxidizing propene, acrylic acid is formed in addition to acrolein (carbon dioxide is formed in slight amount owing to a high selectivity of the catalyst to acrolein).

Whereas acrolein is formed directly from propene, acrylic acid forms, as it follows from experimental data, partly by a consecutive reaction from acrolein and partly by a side reaction directly from propene, according to the reaction scheme (Scheme 1).

Scheme 1

The total rate of acrolein formation R_{A} is given by the relation $R_{\mathrm{A}}=R_{1}-R_{2}$, and the total rate of acrylic acid formation R_{K} by the relation $R_{\mathrm{K}}=R_{2}+R_{3}$. To be able to establish the forms of rate equations for R_{1}, R_{2}, R_{3} from the measured values of rates $R_{\mathrm{A}}, R_{\mathrm{K}}$, it was necessary to study the separate oxidation of acrolein over the same catalyst and, on the basis of the experimental data obtained, to determine a preliminary form of reaction rate R_{2} which corresponds to the reaction rate of formation of acrylic acid from acrolein. For the reaction rate R_{2}, the equation was proposed in a general form

$$
\begin{equation*}
R_{2}=k_{2} \cdot p_{\mathrm{A}}^{\mathrm{n}} /\left(1+K_{2} p_{\mathrm{K}}+K_{3} p_{\mathrm{A}}\right)^{\mathrm{m}} \tag{1}
\end{equation*}
$$

where $n=1,2, m=1,2, p_{\mathrm{A}}$ is the acrolein partial pressure and p_{K} the acrylic acid partial pressure.

The equations were converted to a linear form and treated graphically. From the combinations of possible exponents n and m complies only the equation in the form

$$
\begin{equation*}
R_{2}=k_{2} \cdot p_{\mathrm{A}}^{2} /\left(1+K_{2} p_{\mathrm{K}}+K_{3} p_{\mathrm{A}}\right), \tag{2}
\end{equation*}
$$

where the orientation values of constants were obtained by numerical calculation: $k_{2}=1 \cdot 26.10^{-14} \mathrm{~mol} \mathrm{~s}^{-1} \mathrm{~g}^{-1} \mathrm{~Pa}^{-2}, \quad K_{2}=3 \cdot 21.10^{-3} \mathrm{~Pa}^{-1}, \quad$ and $\quad K_{3}=2 \cdot 22$. $.10^{-4} \mathrm{~Pa}^{-1}$. In linearized form Eq. (2) takes the form

$$
\begin{equation*}
p_{\mathbf{A}}^{2} / R_{2}=1 / k_{2}+K_{2} p_{\mathrm{K}} / k_{2}+K_{3} p_{\mathrm{A}} / k_{2} \tag{3}
\end{equation*}
$$

If the left-hand side of Eq. (3) is denoted by Y_{m} and the right-hand one by Y_{c}, then if Eq. (3) is valid, it must hold $Y_{c}=Y_{m}$, which is very well fulfilled for the measured data of acrolein oxidation to acrylic acid (Fig. 1). If propene is present in the reaction mixture, it is necessary to add a term referring to its adsorption on the catalyst surface to the denominator of Eq. (2). This was done after the complete solution of kinetics of the entire system. To determine the form of rate equation for $R_{1}=$ $=R_{\mathrm{A}}+R_{2}$, it was necessary to calculate, in the first approximation by means of Eq. (2), the values of rates R_{2} for all the values of rates R_{A} found experimentally.

Fig. 1
Dependence of the left-hand side of Eq. (3), denoted by $Y_{\mathrm{m}}\left(\mathrm{Pa}^{2} \mathrm{~s} \mathrm{~g} \mathrm{~mol}{ }^{-1}\right)$, on the right-hand side of Eq. (3), denoted by Y_{c} $\left(\mathrm{Pa}^{2} \mathrm{~s} \mathrm{~g} \mathrm{~mol}{ }^{-1}\right)$, for oxidation of acrolein to acrylic acid

Fig. 2
Dependence of the left-hand side of Eq. (6), denoted by $Y_{\mathrm{m}}\left(\mathrm{s}^{1 / 2} \mathrm{~g}^{1 / 2} \mathrm{~mol}^{-1 / 2}\right)$, on the ratio $p_{\mathrm{P}} / p_{\mathrm{A}}$ for different molar compositions of reaction mixture (initial content $12 \% \mathrm{O}_{2}$ and $20 \% \mathrm{H}_{2} \mathrm{O}$). $\mathrm{O} 3 \% \mathrm{C}_{3} \mathrm{H}_{6} ; 5 \% \mathrm{C}_{3} \mathrm{H}_{6}$; (- $7 \% \mathrm{C}_{3} \mathrm{H}_{6} ; ~ 5 \% \mathrm{C}_{3} \mathrm{H}_{6}, 1.5 \% \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$; $\nabla 5 \% \mathrm{C}_{3} \mathrm{H}_{6}, 4 \% \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O} ; \nabla 7 \% \mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{I} \cdot 5 \%$ $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$; $\square \quad 5 \% \quad \mathrm{C}_{3} \mathrm{H}_{6}, \quad 0.25 \% \quad \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$; - $5 \% \mathrm{C}_{3} \mathrm{H}_{6}, 0.5 \% \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$. The remainder of reaction mixture is nitrogen

The reaction rate R_{1} passes through a maximum in dependence on propene conversion, which indicates that it is probably proportional to the $p_{\mathrm{P}} \cdot p_{\mathrm{A}}$ product (p_{P} is propene partial pressure) or that it can be described by rate equations of bimolecular reactions over the catalyst surface ${ }^{8}$.

Several equations were proposed which describe the above-mentioned facts. These equations were linearized nad graphically treated. The equation

$$
\begin{equation*}
R_{1}=k_{1} p_{\mathrm{P}} \cdot p_{\mathrm{A}} /\left(1+K_{1} p_{\mathrm{P}}+K_{2} p_{\mathrm{K}}+K_{3} p_{\mathrm{A}}\right)^{2} \tag{4}
\end{equation*}
$$

proved to be best. When linearized, it takes the form

$$
\begin{equation*}
\left(p_{\mathrm{A}} / p_{\mathrm{P}} \cdot R_{1}\right)^{1 / 2}=K_{\mathrm{l}} / k_{1}^{1 / 2}+1 / p_{\mathrm{P}} \cdot k_{1}^{1 / 2}+K_{2} p_{\mathrm{K}} / p_{\mathrm{P}} \cdot k_{1}^{1 / 2}+K_{3} p_{\mathrm{A}} / p_{\mathrm{P}} \cdot k_{1}^{1 / 2} \tag{5}
\end{equation*}
$$

and can be rewritten into

$$
\begin{equation*}
Y_{\mathrm{m}} \equiv\left(p_{\mathrm{A}} / p_{\mathrm{P}} \cdot R_{1}\right)^{1 / 2}=A+B / p_{\mathrm{P}}+C \cdot p_{\mathrm{K}} / p_{\mathrm{P}}+D \cdot p_{\mathrm{A}} / p_{\mathrm{P}} \equiv Y_{\mathrm{c}} \tag{6}
\end{equation*}
$$

Fig. 2 illustrates the dependence of Y_{m} on $p_{\mathrm{A}} / p_{\mathrm{p}}$. The coefficients A, B were determined from values of Y_{m} extrapolated to the zero value of $p_{\mathrm{A}} / p_{\mathrm{p}}$ from measured curves when only propene, water, and nitrogen were present in feed. The coefficient C was as well determined from extrapolated values of curves when acrylic acid in addition was present in feed. The coefficient D was then calculated numerically from an arbitrary point of measured curves (it did not concern the curves, however, where acrolein was present in feed). The found values of the coefficients are as follows: $A=60 \mathrm{~g}^{1 / 2} \mathrm{~s}^{1 / 2} \mathrm{~mol}^{-1 / 2}, B=5 \cdot 38.10^{5} \mathrm{Pag}^{1 / 2} \mathrm{~s}^{1 / 2} \mathrm{~mol}^{-1 / 2}, C=1234 \mathrm{~g}^{1 / 2} \mathrm{~s}^{1 / 2}$. . $\mathrm{mol}^{-1 / 2}, D=377 \mathrm{~g}^{1 / 2} \mathrm{~s}^{1 / 2} \mathrm{~mol}^{-1 / 2}$. If the right-hand side of Eq. (6) is denoted by Y_{c}, and the dependence of Y_{m} on Y_{c} is plotted, then if Eq. (6) is valid, the measured points must lie on a straight line with slope equal unity.

It is evident from Fig. $3 a$ that Eq. (6) describes very well the experimental points with pure propene and acrylic acid in feed. If acrolein is present in the reaction mixture already in feed, the numerical values of Y_{c} are substantially lower. Here the content of propene in the reaction mixture makes no difference but the difference $Y_{m}-Y_{\mathrm{c}}$ is directly proportional to the partial pressure of feed acrolein. From it follows that on the right-hand side of Eq. (8) is added another term $E \cdot p_{\mathrm{A}}^{0}$ (p_{A}^{0} is the initial partial pressure of acrolein), where the coefficient E has the value $E=8.8$. $.10^{-2} \mathrm{~g}^{1 / 2} \mathrm{~s}^{1 / 2} \mathrm{~mol}^{-1 / 2} \mathrm{~Pa}^{-1 / 2}$. This additional adsorption term can be explained by the presence of an impurity in acrolein which is sorbed on the catalyst surface.

With respect to the term $E . p_{\mathrm{A}}^{0}$ in Eq. (6) and on using the coefficients A, B, C, D obtained by extrapolation, the relation between the measured Y_{m} and calculated Y_{c} is illustrated in Fig. 3b. The determination of accurate form of the rate equation of R_{1} allows to determine the final form of the rate equation for R_{2} and R_{A}. The
oxidation of acrolein to acrylic acid takes place over the same catalyst as the oxidation of propene to acrolein and consequently the same terms, resulting from the adsorption of single components, must occur in the denominator as in equation for R_{1}, however, the exponent must be different. The total rate of acrolein formation R_{A} can be expressed by the relation

$$
\begin{align*}
R_{\mathrm{A}}= & k_{1} \cdot p_{\mathrm{P}} \cdot p_{\mathrm{A}} /\left(1+K_{1} p_{\mathrm{P}}+K_{2} p_{\mathrm{K}}+K_{3} p_{\mathrm{A}}+K_{4} p_{\mathrm{P}} \cdot p_{\mathrm{a}}^{0}\right)^{2}- \\
& -k_{2} \cdot p_{\mathrm{A}}^{2} /\left(1+K_{1} p_{\mathrm{P}}+K_{2} p_{\mathrm{K}}+K_{3} p_{\mathrm{A}}+K_{4} p_{\mathrm{P}} \cdot p_{\mathrm{A}}^{0}\right) . \tag{7}
\end{align*}
$$

Determination of the constants was carried out by weighted nonlinear regression (simplex method) by means of a computer. Approximate values of the constants, serving as starting values for the nonlinear regression, were determined from the known values of coefficients A, B, C, D, E. The more accurate values of the constants obtained by nonlinear regression are as follows: $k_{1}=3.87 .10^{-12} \mathrm{~mol} \mathrm{~s}^{-1} \mathrm{~g}^{-1} \mathrm{~Pa}^{-2}$, $k_{2}=2 \cdot 57.10^{-14} \mathrm{~mol} \mathrm{~s}^{-1} \mathrm{~g}^{-1} \mathrm{~Pa}^{-2}, \quad K_{1}=8 \cdot 63.10^{-5} \mathrm{~Pa}^{-1}, \quad K_{2}=2 \cdot 12 \cdot 10^{-3}$ $\mathrm{Pa}^{-1}, K_{3}=9 \cdot 38.10^{-4} \mathrm{~Pa}^{-1}, K_{4}=1 \cdot 40.10^{-7} \mathrm{~Pa}^{-2}$.

From the graphic illustration (Figs $4 a, b, c$) of the dependences of R_{A} on propene conversion x_{P} it is evident that Eq. (7) represents well the experimentally found values of R_{A} both for the reaction mixtures with propene in feed and for reaction

Fig. 3
D spendence of the left-hand side of Eq. (6), denoted by $Y_{m}\left(s^{1 / 2} \mathrm{~g}^{1 / 2} \mathrm{~mol}^{-1 / 2}\right)$, on the right--hand side of Eq. (6), denoted by Y_{c} (the same dimension), for oxidation of propene to acrolein (for point symbols see Fig. 2). a without correction for initial partial pressure of acrolein; b after inserting correction for initial partial pressure of acrolein

[^0]mixtures with acrolein and acrylic acid in feed, and describes as well the measured data for the separate oxidation of acrolein to acrylic acid (Fig. 5). The accurate form of equation for the reaction rate R_{2} allows to determine the values of reaction rates $R_{\mathbf{3}}=R_{\mathbf{K}}-R_{\mathbf{2}}$ from the total reaction rate of formation of acrylic acid $R_{\mathbf{K}}$. On the basis of found knowledge, several forms of rate equations for R_{3} were

Fig. 4
Dependence of the total reaction rate of acrolein formation R_{A} on propene conversion (for point symbols see Fig. 2). a with propene in feed; b with propene and acrolein in feed; c with propene and acrylic acid in feed
proposed whose validity was preliminary verified by linearizing and plotting. The total rate of formation of acrylic acid R_{K} is described best by the equation

$$
\begin{gather*}
R_{\mathrm{K}}=k_{2} \cdot p_{\mathrm{A}}^{2} /\left(1+K_{1} p_{\mathrm{P}}+K_{2} p_{\mathrm{K}}+K_{3} p_{\mathrm{A}}+K_{4} p_{\mathrm{P}} \cdot p_{\mathrm{A}}^{0}\right)+k_{3} \cdot p_{\mathrm{P}} \cdot p_{\mathrm{A}} / \\
/\left(1+K_{1} p_{\mathrm{P}}+K_{2} p_{\mathrm{K}}+K_{3} p_{\mathrm{A}}+K_{4} p_{\mathrm{P}} \cdot p_{\mathrm{A}}^{0}\right)^{3} \tag{8}
\end{gather*}
$$

Equation (8) was subjected to nonlinear regression (by simplex method), the optimum value of constant k_{3} being sought (the remaining constants firmly given see constants of Eq. (7)). The found constant k_{3} has the value of $6.49 .10^{-13} \mathrm{~mol}$. . $\mathrm{s}^{-1} \mathrm{~g}^{-1} \mathrm{~Pa}^{-2}$. Agreement of Eq. (8) with the measured data is not so good as with Eq. (7). The reason is small accuracy of the determination of acrylic acid which is formed during the oxidation of propene at most up to 6%.

The suggestion of kinetic scheme of propene oxidation to acrolein stems from the found forms of rate equations for R_{1}, R_{2}, R_{3}. In the rate equation for R_{1}, the product $k_{1} \cdot p_{\mathrm{P}} \cdot p_{\mathrm{A}}$ is a characteristic feature which gives evidence of autocatalytic character of the propene oxidation to acrolein. The autocatalytic character can be modelled by a block of two consecutive reactions with a side reaction of reactant and of final product with a slow first step ${ }^{9}$. The kernel of the scheme proposed forms an autocatalytic block of adsorbed propene P^{*} and particle Y^{*} in the form (Scheme 2):

Scheme 2

Fig. 5
Dependence of the total reaction rate of acrolein decrease R_{2} on acrolein conversion x_{A} for oxidation of acrolein to acrylic acid

The found rate equations are to be interpreted by Scheme 3 whose kinetic equations, on the assumption of adsorption equilibria, lead to Eqs (7) and (8). Scheme 3 expresses also the fact that when feeding acrolein into the reaction mixture, a decrease of rate of acrolein formation occurs owing to an impurity N . The acrolein used was 95%, and higher purity has not been achieved even by repeated distillation on a multiplate column. In Scheme 3, asterisk denotes particles in adsorbed state.

Scheme 3

Scheme 3 is based on the idea that propene is adsorbed on the catalyst surface and the adsorbed propene P^{*} is formed. From P^{*} arises in step 3, with the participation of free active centre of catalyst ${ }^{\ominus}$, adsorbed acrolein A^{*} being in equilibrium with the particle Y^{*} which is able together with adsorbed propene to form additional acrolein A^{*} (step 5). Acrylic acid is formed partly by the consecutive reaction (step 6) when particle Y^{*} reacts with acrolein A in gaseous state and partly by the side reaction (step 9). Chemical interpretation of particles $\mathrm{P}^{*}, \mathrm{~A}^{*}, \mathrm{Y}^{*}$ is discussed in another work ${ }^{10}$.

REFERENCES

1. Hucknall D. J.: Selective Oxidation of Hydrocarbons, p. 48. Academic Press, London 1974.
2. Manaila R., Ionescu N. 1., Caldaru M.: Z. Anorg. Allg. Chem. 466, 221 (1980).
3. Batist P. A., Moespijk C. G., Matsuura I., Schuit G. C. A.: J. Catal. 64, 380 (1980).
4. Krenzke L. D., Keulks G. W.: J. Catal. 64, 295 (1980).
5. Boreskov G. K., Erenburg E. M., Andrushkevich T. V.: React. Kinet. Catal. Lett. 17, 341 (1981).
6. Sivachula J., Tichý J., Machek J.: Chem. Prům., in press.
7. Tichý J., Machek J., Tockstein A., Opatřil P., Majer I., Vraný M.: Czech 185016.
8. Treindl L.: Chemická kinetika, p. 247. Published by Státní pedagogické nakladatelství, Bratislava 1978.
9. Tockstein A., Dlask V.: This Journal 36, 1090 (1971).
10. Švachula J., Tockstein A., Tichý J.: React. Kinet. Catal. Lett., in press.

Translated by J. Linek.

[^0]: Collection Czechosiovak Chem. Commun. [Vol. 51] [1986]

